This Is My World

This is Destarius Blog_everyone can read all of thing in this blog_Don't forget to Give me comments for everything about this blog_Thank You ^-^

Animations - smiley-13

Destarius Profile

Foto saya
Pamekasan On Madura Island, East Java, Indonesia
Blog ini dapat dibaca oleh siapapun_berisi tentang apapun yang ada di pikiran seorang Destarius_berisi tentang apapun yang ada di dalam hati seorang Destarius_ Destarius orangnya_susah dijabarkan_kebanyakan org menilai destarius hanya sekilas saja_dia baik & bersahabat_tak suka dicuekin_Pretend_spoiled human_& others_saat-saat dimana Destarius menjadi sangat menyebalkan dimana Destarius sangat memaksa keinginannya untuk dikabulkan_Destarius badmood dan marah_tapee yang pasti Destarius friendly_asalkan kau sekalian sudah mengenalnya dengan baik_hohohohoho..............

Destarius Files

Animations - book-09

Animations - book-02


Rekayasa Genetika Vietnam Hasilkan Kuda Laut Emas


Di bawah sinar cahaya biru lampu tampak berjajar 108 ekor kuda laut yang tubuhnya memiliki garis bergemerlap bagaikan emas. Hewan-hewan kuda laut tersebut merupakan hewan-hewan yang teramat istimewa karena mereka adalah hewan hasil rekayasa genetika pertama di Vietnam. Usia mereka tak lebih dari dua pekan dan ukuran mereka tak mencapai ukuran sebatang korek api.
Hewan kuda laut itu dilahirkan dengan menggunakan cara "metoda penyuntikan gen" yang diprakarsai oleh ilmuwan Phan Kim Ngoc dari University College of Science di Ho Chi Minh City.
"Gen GFP, yaitu gen yang diambil dari satu jenis ikan laut (jellyfish) yang memiliki bintik-bintik kecil pada tubuh berwarna keemasan.
Bintik-bintik keemasan itu disuntikkan kepada telur hewan kuda laut. Sifat genetik bintik keemasan itu masuk kedalam sel-sel hewan kuda laut hasil rekayasa genetika yang tampak bercahaya gemerlapan saat berada dalam kedalaman laut ," kata Ngoc, kepala departemen physiology hewan.
Ngoc dan rekan-rekannya telah menghabiskan waktu tiga tahun mengembangkan teknik dan telah mengalami kegagalan lebih dari 20 kali dalam upayanya.
Ngoc telah mencoba menggunakan teknik antara lain injeksi- micro dan gagal. Sel telur hewan kuda laut hidup di lingkungan sumber air sehingga lapisan sel mereka kini jauh lebih keras dan kuat.
"Berdasarkan pada percobaan yang telah dilakukan di seluruh dunia maka kami memutuskan untuk menggunakan metoda "penyuntikan gen" yang membawa gen sinar gemerlap kedalam sel telur kuda laut," kata Ngoc yang juga ketua tim peneliti yang melakukan penelitian therapi genetika pada tahun 2002.
Para ilmuwan bereksperimen dengan sejumlah hewan lainnya namun dengan kuda lautlah usaha memperoleh garis-garis bergemerlap keemasan berhasil.
"Setelah berhasil memperoleh garis-garis keemasan kedalam sel telur kuda laut maka kami telah berhasil membuat generasi masa depan kuda laut yang berkilauan." kata Ngoc.
"Hewan hasil rekayasa genetika tersebut menandai keberhasilan pertama kami dengan tehnologi pada hewan," kata Professor Pham Thanh, seorang tokoh ilmuwan di bidang bio-teknology.
"Keberhasilan ini akan sangat berguna untuk ilmu kedokteran. Metoda tersebut dapat digunakan untuk menangani dan menggantikan gen-gen negatif dengan gen-gen yang baik.
Dan pada hewan ternak sapi metoda itu dapat digunakan untuk menghasilkan lebih banyak susu, dan mendapatkan hewan ternak babi yang tidak terlalu banyak lemaknya demikian pula pada hewan ternak unggas yang jauh lebih unggul.
Selain itu juga dapat digunakan untuk melestarikan sejumlah jenis spesies yang hampir punah atau untuk membersihkan lingkungan," kata Ngoc menambahkan .
"Teknologi transfer -gen juga dapat digunakan untuk menangani penyakit-penyakit yang tak dapat disembuhkan," kata Ngoc yang mengatakan ia akan menggunakan metoda tersebut untuk menangani penyakit diabetes.

Jubah tembus pandang


Jubah tembus pandang atau jubah gaib (Inggris: cloaks of invisibility) adalah suatu istilah yang dikenal dalam dunia fiksi, dan dewasa ini dalam sains. Istilah ini mengacu pada sebuah jubah atau selubung yang dapat membuat seseorang atau benda yang dilingkupi oleh benda ini menjadi kasat mata atau tidak terlihat. Dalam fiksi hal ini dikaitkan dengan suatu sifat gaib atau sihir, sedangkan dalam sains dikaitkan dengan prinsip penglihatan. Apabila tidak ada sinar dari sumber cahaya yang dipantulkan oleh suatu benda dan kemudian tiba di mata maka benda tersebut dikatakan "tidak terlihat".

Jubah tembus pandang dalam fiksi

Jubah tembus pandang amat jarang diceritakan dalam cerita-cerita; walaupun demikian benda-benda yang mirip benar-benar terdapat dalam beberapa kisah-kisah peri, seperti The Twelve Dancing Princesses, dengan sebuah trope umum topi tembus pandang. Topi tembus pandang muncul dalam mitologi Yunani: Pluto diceritakan memiliki sebuah topi atau helem yang dapat membuat pemakainya tidak kelihatan. Dalam beberapa versi mitologi tentang Perseus, Perseus meminjam topi ini dari dewi Athena dan menggunakannya untuk menyelinap dekat Medusa yang sedang tertidur saat ia membunuhnya, di mana ia mendapatkannya dari para Nymphe atau para Graien. Helm sejenis, Tarnhelm, ditemukan dalam mitologi Norse. Dalam Second Branch dari Mabinogi, salah satu dari teks-teks penting mitologi Welsh, Caswallawn (Cassivellaunus bersejarah) membunuh Caradog ap Bran dan dan kepala-kepala suku lainnya yang tersisa, yang mendukung Britain, saat mengenakan jubah gaib.Siegfried berhasil memenangkan Tarnkappe dari raja para kurcaci, Raja Alberich seperti diceritakan dalam Nibelungenlied. Dalam saga ini Tarnkappe tidak berbentuk tutup kepala, melainkan - menurut penggunaan istilah dalam bahasa Jerman pada masa awal abad pertengahan - sebuah mantel atau jubah.
Dewasa ini, jubah gaib digunakan dalam serial Harry Potter. Edgar Rice Burroughs dalam novel tahun 1931-nya A Fighting Man of Mars juga menggunakan ide ini. Sebuah adegan dalam film Erik the Viking dengan agak berkelakar menyajikan seorang karakter judul (karakter yang namanya digunakan dalam judul filmnya) menggunakan sebuah jubah gaib pinjaman, yang tidak ia sadari dan berfungsi hanya pada ayah bodoh sang pangeran, sang pemilik jubah. Musuh-musuhnya benar-benar tersihir atas kelakuannya yang aneh dan penjelasannya yang salah mengenai kemampuannya untuk menghilang sehingga mereka sedemikian terpana untuk memeranginya, akibatnya ia dapat dengan mudah mengalahkan mereka.
Alat penghilang (cloaking device), muncul dalam Star Wars dan Star Trek dan juga dalam Stargate , menyajikan bentuk representasi yang mirip dalam bentuk fiksi sains. Dalam fiksi sains, konsep dari ketidakkelihatan (invisibility ) atau tembus pandang lebih umum digunakan dalam sains fantasi dibandingkan dalam bentuk-bentuk yang berdasarkan atas ilmu pengetahuan yang masuk akal.

Harry Potter

Dalam kisah Harry Potter jubah gaib adalah sebuah warisan dari James Potter kepada Harry, yang membuat orang yang memakainya tak terlihat. Harry sering memanfaatkan jubah ini untuk bersembunyi. Dalam buku terakhirnya, Harry Potter dan Relikui Kematian jubah ini termasuk dalam legenda tiga Relikui Kematian yang membuat para pemakainya menjadi tak terkalahkan, bahkan oleh sang kematian sekalipun.

Jubah tembus pandang dalam sains

Saat ini Tarnkappe nyata sedang diteliti dan dikerjakan. Sebuah prototip telah siap dirampungkan menggunakan semacam bahan yang kerap disebut metamaterial, yang memiliki indeks bias negatif dan mencerai-beraikan gelombang elektromagnetik, dan bukan menyatukannya.
Pada tanggal 19 Oktober 2006 sebuah kerjasama antara para ilmuwan Inggris dan USA menghasilkan sebuah jubah atau mantel yang mencegah sebuah silinder tembaga terdeteksi oleh gelombang mikro. Jubah ini dibuat dari metamaterials, yang masih menampilkan sedikit bayangan, yang diharapkan oleh para perancangnya dapat segera diperbaiki.
Piranti tersebut bekerja hanya dalam dua dimensi dan hanya pada gelombang mikro, obyek yang akan dihilangkan tetap terlihat oleh mata telanjang, walaupun demikian penelitian setidaknya telah meletakkan fondasi bagi suatu bentuk ke-kasat-mata-an (invisibility)
David R. Smith, seorang akademisi Augustine dan seorang profesor di bidang rekayasa listrik dan kompter pada Universitas Duke yang mendemonstrasikan "jubah tembus pandang" pertama yang dapat berfungsi, dikutip telah mengatakan:

Sampai saat ini belum jelas apakah anda pada suatu saat dapat memiliki "ke-kasat-mata-an" seperti yang dipikirkan orang bila bicara mengenai Jubah Gaib Harry Potter atau piranti menghilang Star Trek. Untuk membuat sebuah obyek benar-benar menghilang di hadapan mata seseorang, sebuah selubung atau jubah seyogyanya harus berinterasi secara simultan dengan segala panjang gelombang, atau warna, yang menyusun cahaya.


Cahaya dari belakang jubah "dialirkan" ke depan jubah dan jatuh pada mata pengamat, membuat jubah "tembus pandang".

Jubah menghilangkan benda karena cahaya dari sumber cahaya yang jatuh pada benda dipantulkan tidak ke mata pengamat melainkan ke arah lain: T: terlihat; TT: tidak terlihat.
Meskipun demikian, studi baru yang dilakukan oleh sekelompok ilmuwan Amerika mengatakan bahwa jubah atau selubung semacam itu akan amat mirip dengan Jubah Gaib Harry Potter, tetapi tanpa menghasilkan bayangan, karena sel-sel pada selubung memperbolehkan cahaya untuk dibelokkan di sekeliling mereka. Rancangan membutuhkan jarum-jarum mungil yang dicocokan pada sebuah kerucut sikat rambut pada semua sudut dan panjang yang akan memaksa cahaya untuk diteruskan mengelilingi selubung. Hal ini akan membuat segala yang terdapat dalam kerucut terlihat menghilang karena cahaya tidak lagi dipantulkan. "Hal ini terlihat sangat fiksi, tapi saya benar-benar menyadari, bahwa hal ini bersesuaian dengan hukum-hukum fisika," ucap seorang pemimpin peneliti Vladimir Shalaev, seorang profesor bidang rekayasa listrik dan komputer di Purdue. "Idealnya, jika kita dapat membuatnya menjadi nyata, benda ini akan berfungsi benar-benar sama dengan Jubah Gaib Harry Potter," ujarnya. "Jubah ini tak akan menjadi berat karena hanya terdapat sedikit logam di dalamnya."

New and Improved Antimatter Spaceship for Mars Missions

Most self-respecting starships in science fiction stories use antimatter as fuel for a good reason – it’s the most potent fuel known. While tons of chemical fuel are needed to propel a human mission to Mars, just tens of milligrams of antimatter will do (a milligram is about one-thousandth the weight of a piece of the original M&M candy). Image right: A spacecraft powered by a positron reactor would resemble this artist's concept of the Mars Reference Mission spacecraft. Credit: NASA However, in reality this power comes with a price. Some antimatter reactions produce blasts of high energy gamma rays. Gamma rays are like X-rays on steroids. They penetrate matter and break apart molecules in cells, so they are not healthy to be around. High-energy gamma rays can also make the engines radioactive by fragmenting atoms of the engine material. The NASA Institute for Advanced Concepts (NIAC) is funding a team of researchers working on a new design for an antimatter-powered spaceship that avoids this nasty side effect by producing gamma rays with much lower energy. Antimatter is sometimes called the mirror image of normal matter because while it looks just like ordinary matter, some properties are reversed. For example, normal electrons, the familiar particles that carry electric current in everything from cell phones to plasma TVs, have a negative electric charge. Anti-electrons have a positive charge, so scientists dubbed them "positrons". When antimatter meets matter, both annihilate in a flash of energy. This complete conversion to energy is what makes antimatter so powerful. Even the nuclear reactions that power atomic bombs come in a distant second, with only about three percent of their mass converted to energy. Previous antimatter-powered spaceship designs employed antiprotons, which produce high-energy gamma rays when they annihilate. The new design will use positrons, which make gamma rays with about 400 times less energy. The NIAC research is a preliminary study to see if the idea is feasible. If it looks promising, and funds are available to successfully develop the technology, a positron-powered spaceship would have a couple advantages over the existing plans for a human mission to Mars, called the Mars Reference Mission. Image left: A diagram of a rocket powered by a positron reactor. Positrons are directed from the storage unit to the attenuating matrix, where they interact with the material and release heat. Liquid hydrogen (H2) circulates through the attenuating matrix and picks up the heat. The hydrogen then flows to the nozzle exit (bell-shaped area in yellow and blue), where it expands into space, producing thrust. Print-resolution copy Credit: Positronics Research, LLC "The most significant advantage is more safety," said Dr. Gerald Smith of Positronics Research, LLC, in Santa Fe, New Mexico. The current Reference Mission calls for a nuclear reactor to propel the spaceship to Mars. This is desirable because nuclear propulsion reduces travel time to Mars, increasing safety for the crew by reducing their exposure to cosmic rays. Also, a chemically-powered spacecraft weighs much more and costs a lot more to launch. The reactor also provides ample power for the three-year mission. But nuclear reactors are complex, so more things could potentially go wrong during the mission. "However, the positron reactor offers the same advantages but is relatively simple," said Smith, lead researcher for the NIAC study. Also, nuclear reactors are radioactive even after their fuel is used up. After the ship arrives at Mars, Reference Mission plans are to direct the reactor into an orbit that will not encounter Earth for at least a million years, when the residual radiation will be reduced to safe levels. However, there is no leftover radiation in a positron reactor after the fuel is used up, so there is no safety concern if the spent positron reactor should accidentally re-enter Earth's atmosphere, according to the team. It will be safer to launch as well. If a rocket carrying a nuclear reactor explodes, it could release radioactive particles into the atmosphere. "Our positron spacecraft would release a flash of gamma-rays if it exploded, but the gamma rays would be gone in an instant. There would be no radioactive particles to drift on the wind. The flash would also be confined to a relatively small area. The danger zone would be about a kilometer (about a half-mile) around the spacecraft. An ordinary large chemically-powered rocket has a danger zone of about the same size, due to the big fireball that would result from its explosion," said Smith. Another significant advantage is speed. The Reference Mission spacecraft would take astronauts to Mars in about 180 days. "Our advanced designs, like the gas core and the ablative engine concepts, could take astronauts to Mars in half that time, and perhaps even in as little as 45 days," said Kirby Meyer, an engineer with Positronics Research on the study. Advanced engines do this by running hot, which increases their efficiency or "specific impulse" (Isp). Isp is the "miles per gallon" of rocketry: the higher the Isp, the faster you can go before you use up your fuel supply. The best chemical rockets, like NASA's Space Shuttle main engine, max out at around 450 seconds, which means a pound of fuel will produce a pound of thrust for 450 seconds. A nuclear or positron reactor can make over 900 seconds. The ablative engine, which slowly vaporizes itself to produce thrust, could go as high as 5,000 seconds. Image right: This is an artist's concept of an advanced positron rocket engine, called an ablative engine. This engine produces thrust when material in the nozzle is vaporized (ablated). In the image, the engine emits blue-white exhaust as thin layers of material are vaporized by positrons in tiny capsules surrounded by lead. The capsules are shot into the nozzle compartment many times per second. Once in the nozzle compartment, the positrons are allowed to interact with the capsule, releasing gamma rays. The lead absorbs the gamma rays and radiates lower-energy X-rays, which vaporize the nozzle material. This complication is necessary because X-rays are more efficiently absorbed by the nozzle material than gamma rays would be. Credit: Positronics Research, LLC One technical challenge to making a positron spacecraft a reality is the cost to produce the positrons. Because of its spectacular effect on normal matter, there is not a lot of antimatter sitting around. In space, it is created in collisions of high-speed particles called cosmic rays. On Earth, it has to be created in particle accelerators, immense machines that smash atoms together. The machines are normally used to discover how the universe works on a deep, fundamental level, but they can be harnessed as antimatter factories. "A rough estimate to produce the 10 milligrams of positrons needed for a human Mars mission is about 250 million dollars using technology that is currently under development," said Smith. This cost might seem high, but it has to be considered against the extra cost to launch a heavier chemical rocket (current launch costs are about $10,000 per pound) or the cost to fuel and make safe a nuclear reactor. "Based on the experience with nuclear technology, it seems reasonable to expect positron production cost to go down with more research," added Smith. Another challenge is storing enough positrons in a small space. Because they annihilate normal matter, you can't just stuff them in a bottle. Instead, they have to be contained with electric and magnetic fields. "We feel confident that with a dedicated research and development program, these challenges can be overcome," said Smith. If this is so, perhaps the first humans to reach Mars will arrive in spaceships powered by the same source that fired starships across the universes of our science fiction dreams.

Sekilas Info Tentang Thunderbird

Thunderbird adalah aplikasi mail client (MUA - Mail User Agent) yang fungsinya sama dengan Outlook Express, Eudora Mail, Evolution, Sylpheed, dan sejenisnya. Thunderbird ini adalah salah satu produk turunan dari Mozilla. Pada awalnya Mozilla selalu mengemas aplikasinya dengan Browser + Mail Client. Namun, Mozilla mencoba memecah produknya dan membuatnya jauh lebih menarik dan ringan. Project Browsernya bernama: FireFox, dimana Project Mail Client-nya bernama: Thunderbird.
Thunderbird diproduksi untuk beberapa operating system, antara lain: Windows, Linux (Unix), atau MacosX. Thunderbird mempunyai kemampuan untuk berganti-ganti themes, dan dapat ditambahkan dengan plugin. Thunderbird juga bisa melakukan import setting dan mail dari Outlook Express, Mozilla / Netscape. Thunderbird bisa berfungsi sebagai RSS feeder, yaitu untuk membaca atau melakukan cek blog ala RSS

Biofuel


Biofuel adalah setiap bahan bakar baik padatan, cairan ataupun gas yang dihasilkan dari bahan-bahan organik. Biofuel dapat dihasilkan secara langsung dari tanaman atau secara tidak langsung dari limbah industri, komersial, domestik atau pertanian. Ada tiga cara untuk pembuatan biofuel: pembakaran limbah organik kering (seperti buangan rumah tangga, limbah industri dan pertanian); fermentasi limbah basah (seperti kotoran hewan) tanpa oksigen untuk menghasilkan biogas (mengandung hingga 60 persen metana), atau fermentasi tebu atau jagung untuk menghasilkan alkohol dan ester; dan energi dari hutan (menghasilkan kayu dari tanaman yang cepat tumbuh sebagai bahan bakar).


Proses fermentasi menghasilkan dua tipe biofuel: alkohol dan ester. Bahan-bahan ini secara teori dapat digunakan untuk menggantikan
bahan bakar fosil tetapi karena terkadang diperlukan perubahan besar pada mesin, biofuel biasanya dicampur dengan bahan bakar fosil. Uni Eropa merencanakan 5,75 persen etanol yang dihasilkan dari gandum, bit, kentang atau jagung ditambahkan pada bahan bakar fosil pada tahun 2010 dan 20 persen pada 2020. Sekitar seperempat bahan bakar transportasi di Brazil tahun 2002 adalah etanol.


Biofuel menawarkan kemungkinan memproduksi energi tanpa meningkatkan kadar karbon di atmosfir karena berbagai tanaman yang digunakan untuk memproduksi biofuel mengurangi kadar karbondioksida di atmosfir, tidak seperti bahan bakar fosil yang mengembalikan karbon yang tersimpan di bawah permukaan tanah selama jutaan tahun ke udara. Dengan begitu biofuel lebih bersifat
carbon neutral dan sedikit meningkatkan konsentrasi gas-gas rumah kaca di atmosfir (meski timbul keraguan apakah keuntungan ini bisa dicapai di dalam prakteknya). Penggunaan biofuel mengurangi pula ketergantungan pada minyak bumi serta meningkatkan keamanan energi.


Ada dua strategi umum untuk memproduksi biofuel. Strategi pertama adalah menanam tanaman yang mengandung gula (tebu, bit gula, dan sorgum manis) atau tanaman yang mengandung pati/polisakarida (jagung), lalu menggunakan fermentasi ragi untuk memproduksi etil alkohol. Strategi kedua adalah menanam berbagai tanaman yang kadar minyak sayur/nabatinya tinggi seperti kelapa sawit, kedelai, alga, atau jathropa. Saat dipanaskan, maka keviskositasan minyak nabati akan berkurang dan bisa langsung dibakar di dalam mesin diesel, atau minyak nabati bisa diproses secara kimia untuk menghasilkan bahan bakar seperti biodiesel. Kayu dan produk-produk sampingannya bisa dikonversi menjadi biofuel seperti gas kayu, metanol atau bahan bakar etanol.

Energi bio dari limbah

Penggunaan limbah biomassa untuk memproduksi energi mampu mengurangi berbagai permasalahan manajemen polusi dan pembuangan, mengurangi penggunaan bahan bakar fosil, serta mengurangi emisi gas rumah kaca. Uni Eropa telah mempublikasikan sebuah laporan yang menyoroti potensi energi bio yang berasal dari limbah untuk memberikan kontribusi bagi pengurangan pemanasan global. Laporan itu menyimpulkan bahwa di tahun 2020 nanti 19 juta ton minyak tersedia dari biomassa, 46% dari limbah bio: limbah padat perkotaan, residu pertanian, limbah peternakan, dan aliran limbah terbiodegradasi yang lain.


Tempat penampungan akhir sampah menghasilkan sejumlah gas karena limbah yang dipendam di dalamnya mengalami pencernaan anaerobik. Secara kolektif gas-gas ini dikenal sebagai landfill gas (LFG) atau gas tempat pembuangan akhir sampah. Landfill gas bisa dibakar baik secara langsung untuk menghasilkan panas atau menghasilkan listrik bagi konsumsi publik. Landfill gas mengandung sekitar 50% metana, gas yang juga terdapat di dalam gas alam.


Biomassa bisa berasal dari limbah materi tanaman. Gas dari tempat penampungan kotoran manusia dan hewan yang memasuki atmosfir merupakan hal yang tidak diinginkan karena metana adalah salah satu gas rumah kaca yang potensil pemanasan globalnya melebihi karbondioksida.
Frank Keppler dan Thomas Rockmann menemukan bahwa tanaman hidup juga memproduksi metana CH4.

Bahan bakar berbentuk cair bagi transportasi

Sebagian besar bahan bakar transportasi berbentuk cairan, sebab berbagai kendaraan biasanya membutuhkan kepadatan energi yang tinggi. Kendaraan biasanya membutuhkan kepadatan kekuatan yang tinggi yang bisa disediakan oleh mesin pembakaran dalam. Mesin ini membutuhkan bahan bakar pembakaran yang bersih untuk menjaga kebersihan mesin dan memiminalisir polusi udara. Bahan bakar yang lebih mudah dibakar dengan bersih biasanya berbentuk cairan dan gas. Dengan begitu cairan (serta gas-gas yang bisa disimpan dalam bentuk cair) memenuhi persyaratan pembakaran yang portabel dan bersih. Selain itu cairan dan gas bisa dipompa, yang berarti penanganannya mudah dimekanisasi, dan dengan begitu tidak membutuhkan banyak tenaga.

Biofuel generasi pertama

Biofuel generasi pertama menunjuk kepada biofuel yang terbuat dari gula, starch, minyak sayur, atau lemak hewan menggunakan teknologi konvensional.


Biofuel generasi pertama yang umum didaftar sebagai berikut.

Biodiesel

Biodiesel merupakan biofuel yang paling umum di Eropa. Biodiesel diproduksi dari minyak atau lemak menggunakan transesterifikasi dan merupakan cairan yang komposisinya mirip dengan diesel mineral. Nama kimianya adalah methyl asam lemak (atau ethyl) ester (FAME). Minyak dicampur dengan sodium hidroksida dan methanol (atau ethanol_ dan reaksi kimia menghasilkan biodiesel (FAME) dan glycerol. 1 bagian glycerol dihasilkan untuk setiap 10 bagian biodiesel.

Biodiesel dapat digunakan di setiapa mesin diesel kalau dicampur dengan diesel mineral. Di beberapa negara produsen memberikan garansi untuk penggunaan 100% biodiesel. Kebanyakan produsen kendaraan membatasi rekomendasi mereka untuk penggunaan biodiesel sebanyak 15% yang dicampur dengan diesel mineral. Di kebanyakan negara Eropa, campuran biodiesel 5% banyak digunakan luas dan tersedia di banyak stasiun bahan bakar.

Di AS, lebih dari 80% truk komersial dan bis kota beroperasi menggunakan diesel. Oleh karena itu penggunaan biodiesel AS bertumbuh cepat dari sekitar 25 juta galon per tahun pada 2004 menjadi 78 juta galon pada awal 2005. Pada akhir 2006, produksi biodiesel diperkirakan meningkat empat kali lipat menjadi 1 milyar galon.

Bioalkohol

Alkohol yang diproduksi secarai biologi, yang umum adalah ethanol, dan yang kurang umum adalah propanol dan butanol, diproduksi dengan aksi mikroorganisme dan enzym melalui fermentasi gula atau starch, atau selulosa. Biobutanol seringkali dianggap sebagai pengganti langsung bensin, karena dapat digunakan langsung dalam mesin bensin.

Butanol terbentuk dari ABE fermentation (acetone, butanol, ethanol) dan eksperimen modifikasi dari proses tersebut memperlihatkan potensi yang menghasilkan energi yang tinggi dengan butanol sebagai produk cair. Butanol dapat menghasilkan energi yang lebih banyak dan dapat terbakar "langsung" dalam mesin bensin yang sudah ada (tanpa modifikasi mesin).Dan lebih tidak menyebabkan korosi dan kurang dapat tercampur dengan air dibanding ethanol, dan dapat didistribusi melalui infrastruktur yang telah ada. Dupont dan BP bekerja sama untuk menghasilkan butanol.

Bahan bakar ethanol merupakan biofuel paling umum di dunia, terutama bahan bakar ethanol di Brazil. Bahan bakar alkohol diproduksi dengan cara fermentasi gula yang dihasilkan dari gandum, jagung, sugar beet, sugar cane, molasses dan gula atau starch yang dapat dibuat minuman beralkohol (seperti kentang dan sisa buah, dll). Produksi ethanol menggunakan digesti enzyme untuk menghasilkan gula dari starch, fermentasi gula, distilasi dan pengeringan. Proses ini membutuhkan banyak energi untuk pemanasan (seringkali menggunakan gas alam).

Produksi ethanol selulosik menggunakan tanaman non-pangan atau produk sisa yang tak bisa dikonsumsi, yang tidak mengakibatkan dampak pada siklus makanan.

Memproduksi ethanol dari selulosa merupakan langkah-tambahan yang sulit dan mahal dan masih menunggu penyelesaian masalah teknis. Ternak yang memakan rumput dan menggunakan proses digestif yang lamban untuk memecahnya menjadi glukosa (gula). Dalam laboratorium ethanol selulosik, banyak proses eksperimental sedang dilakukan untuk melakukan hal yang sama, dan menggunakan cara tersebut untuk membuat bahan bakar ethanol.

Beberapa ilmuwan telah mengemukakan rasa prihatin terhadap percobaan teknik genetika DNA rekombinan yang mencoba untuk mengembangkan [enzym] yang dapat memecah kayu lebih cepat dari alam, makhluk mikroskopik tersebut dapat tidak sengaja terlepas ke alam, tumbuh secara eksponensial, disebarkan oleh angin, dan pada akhirnya menyebabkan kerusakan struktur seluruh tanaman, yang dapat mengakhiri produksi oksigen yang dilepaskan oleh proses fotosintesis tumbuhan.

Ethanol dapat digunakan dalam mesin bensin sebagai pengganti bensin; ethanol dapat dicampur dengan bensin dengan persentase tertentu. Kebanyakan mesin bensin dapat beroperasi menggunakan campuran ethanol sampai 15% dengan bensin. Bensin dengan ethanol memiliki angka oktan yang lebih tinggi, yang berarti mesin dapat terbakar lebih panas dan lebih efisien.

Bahan bakar ethanol memiliki BTU yang lebih rendah, yang berarti memerlukan lebih banyak bahan bakar untuk melakukan perjalan dengan jarak yang sama. Dalam mesin kompresi-tinggi, dibutuhkan bahan bakar dengan sedikit ethanol dan pembakaran lambat untuk mencegah pra-ignisi yang merusak (knocking).

Ethanol sangat korosif terhadap sistem pembakaran, selang dan gasket karet, aluminum, dan ruang pembakaran. Oleh karena itu penggunaan bahan bakar yang mengandung alkohol ilegal bila digunakan pesawat. Untuk campuran ethanol konsentrasi tinggi atau 100%, mesin perlu dimodifikasi.

Ethanol yang meyebabkan korosif tidak dapat disalurkan melalui pipa bensin, oleh karena itu diperlukan truk tangki stainless-steel yang lebih mahal, meningkatkan konsumsi biaya dan energi yang dibutuhkan untuk mengantar ethanol ke konsumen.

Banyak produsen kendaraan sekarang ini memproduksi kendaraan bahan bakar fleksibel, yang dapat beroperasi dengan kombinasi bioethanol dan bensin, sampai dengan 100% bioethanol.
Alkohol dapat bercampur dengan bensin dan air, jadi
bahan bakar ethanol dapat tercampur setelah proses pembersihan dengan menyerap kelembaban dari atmosfer. Air dalam bahan bakar ethanol dapat mengurangi efisiensi, menyebabkan mesin susah dihidupkan, menyebabkan gangguan operasi, dan mengoksidasi aluminum (karat pada karburator dan komponen dari besi).

BioGas

Biogas diproduksi dengna proses digesti anaerobik dari bahan organik oleh anaerobe. Biogas dapat diproduksi melalui bahan sisa yang dapat terurai atau menggunakan tanaman energi yang dimasukan ke dalam pencerna anaerobik untuk menambah gas yang dihasilkan. Hasil sampingan, digestate, dapat digunakan sebagai bahan bakar bio atau pupuk.
Biogas mengandung
methane dan dapat diperoleh dari digester anaerobik industri dan sistem pengelolaan biologi mekanik. Gas sampah adalah sejenis biogas yang tidak bersih yang diproduksi dalam tumpukan sampah melalui digesti anaerobik yang terjadi secara alami. Bila gas ini lepas ke atmosfer, gas ini merupakan gas rumah kaca.

Oils and gases can be produced from various biological wastes:

Thermal depolymerization of waste can extract methane and other oils similar to petroleum.

GreenFuel Technologies Corporation developed a patented bioreactor system that uses nontoxic photosynthetic algae to take in smokestacks flue gases and produce biofuels such as biodiesel, biogas and a dry fuel comparable to coal.

Biofuel padat


Contohnya termasuk kayu, arang, dan
manur kering.

Syngas

Syngas dihasilkan oleh kombinasi proses pyrolysis, kombusi, dan gasifikasi. Bahan bakar bio dikonversi menjadi karbon monoksida dan energi melalui pyrolysis. Masukan oksigen terbatas diberikan untuk mendukung kombusi. Gasifikasi mengubah materi organik menjadi hidrogen dan karbon monoksida.

Campuran gas yang dihasilkan, syngas, adalah bahan bakar.

Biofuel generasi kedua

Para pendukung biofuel mengklaim telah memiliki solusi yang lebih baik untuk meningkatkan dukungan politik serta industri untuk, dan percepatan, implementasi biofuel generasi kedua dari sejumlah tanaman yang tidak digunakan untuk konsumsi manusia dan hewan, di antaranya cellulosic biofuel.Proses produksi biofuel generasi kedua bisa menggunakan berbagai tanaman yang tidak digunakan untuk konsumsi manusia dan hewan yang diantaranya adalah limbah biomassa, batang/tangkai gandum, jagung, kayu, dan berbagai tanaman biomassa atau energi yang spesial (contohnya Miscanthus). Biofuel generasi kedua (2G) menggunakan teknologi biomassa ke cairan, diantaranya cellulosic biofuel dari tanaman yang tidak digunakan untuk konsumsi manusia dan hewan.Sebagian besar biofuel generasi kedua sedang dikembangkan seperti biohidrogen, biometanol, DMF, Bio-DME, Fischer-Tropsch diesel, biohydrogen diesel, alkohol campuran dan diesel kayu. Produksi cellulosic ethanol mempergunakan berbagai tanaman yang tidak digunakan untuk konsumsi manusia dan hewan atau produk buangan yang tidak bisa dimakan. Memproduksi etanol dari selulosa merupakan sebuah permasalahan teknis yang sulit untuk dipecahkan. Berbagai hewan ternak pemamah biak (seperti sapi) memakan rumput lalu menggunakan proses pencernaan yang berkaitan dengan enzim yang lamban untuk menguraikannya menjadi glukosa (gula). Di dalam labolatorium cellulosic ethanol, berbagai proses eksperimen sedang dikembangkan untuk melakukan hal yang sama, lalu gula yang dihasilkan bisa difermentasi untuk menjadi bahan bakar etanol. Para ilmuwan juga sedang bereksperimen dengan sejumlah organisme hasil rekayasa genetik penyatuan kembali DNA yang mampu meningkatkan potensi biofuel.

NUKLIR DI BIDANG KESEHATAN & KEDOKTERAN
Abad 20 ditandai dengan perkembangan yang menakjubkan di bidang ilmu dan pengetahuan (iptek), termasuk iptek kedokteran dan kesehatan, sehingga memberikan sumbangan yang sangat berharga dalam diagnosis dan terapi berbagai penyakit.

Penggunaan isotop radioaktif dalam bidang kedokteran telah dimulai tahun 1901 oleh Henri Danlos yang menggunakan Radium untuk pengobatan penyakit Tuberculosis pada kulit. Tetapi yang dianggap Bapak Ilmu Kedokteran Nuklir adalah George C de Havessy. Dialah yang meletakkan dasar prinsip perunut dengan menggunakan zat radioaktif. Waktu itu yang digunakan adalah radioisotop alam Pb212. Dengan ditemukannya radioisotop buatan, maka radioisotop alam tidak lagi digunakan.

Radioisotop buatan yang banyak dipakai pada masa awal perkembangan kedokteran nuklir adalah I131. Pemakaiannya kini telah terdesak oleh Tc99m, selain karena sifatnya yang ideal dari segi proteksi radiasi dan pembentukan citra juga dapat diperoleh dengan mudah, serta harga relatif murah. Namun demikian, I131 masih sangat diperlukan untuk diagnostik dan terapi, khususnya kanker kelenjar tiroid.

Perkembangan ilmu kedokteran nuklir yang sangat pesat didukung oleh perkembangan teknologi instrumentasi untuk pembuatan citra terutama dengan digunakannya komputer untuk pengolahan data sehingga sistem intrumentasi yang dahulu hanya menggunakan detektor radiasi biasa dengan sistem elektronik sederhana, kini telah berkembang menjadi peralatan canggih kamera gamma dan kamera positron yang dapat menampilkan citra alat tubuh, baik dua dimensi maupun tiga dimensi, serta statik maupun dinamik. Berbagai disiplin ilmu kedokteran seperti penyakit dalam, ilmu penyakit syaraf, ilmu penyakit jantung, dan sebagainya telah mengambil manfaat dari teknik nuklir ini.
Kedokteran Nuklir

Merupakan cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran.
Radioisotop dapat dimasukkan ke tubuh pasien (studi in-vivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine, dan sebagainya, yang diambil dari tubuh pasien, yang lebih dikenal sebagai studi in-vitro (dalam gelas percobaan).
Pada studi in-vivo, setelah radioisotop dapat dimasukkan ke tubuh pasien melalui mulut, suntikan, atau dihirup lewat hidung, maka informasi yang dapat diperoleh dari pasien dapat berupa:
1. Citra atau gambar dari organ/bagian tubuh pasien yang diperoleh dengan bantuan peralatan kamera gamma ataupun kamera positron (teknik imaging).2. Kurva-kurva kinetika radioisotop dalam organ/bagian tubuh tertentu dan angka-angka yang menggambarkan akumulasi radioisotop dalam organ/bagian tubuh tertentu disamping citra atau gambar yang diperoleh dengan kamera gamma ataupun kamera positron3. Radioaktivitas yang terdapat dalam contoh bahan biologis )darah, urine, dll) yang diambil dari tubuh pasien, dicacah dengan instrumen yang dirangkaikan pada detektor radiasi (teknik non-imaging).
Data yang diperoleh baik dengan teknik imaging maupun teknik non-imaging memberikan informasi mengenai fungsi organ yang diperiksa. Pencitraan (imaging) pada kedokteran nuklir dalam beberapa hal berbeda dengan pencitraan dalam radiologi.

Kedokteran Nuklir Radiologi
Sumber Radiasi Zat radioaktif yang terbuka Pesawat pembangkit radiasiPembentukan Citra Emisi radiasi, perbedaan akumulasi radioisotop dalam berbagai bagian tubuh Transmisi radiasi; pembedaan daya tembus radiasi terhadap berbagai bagian tubuhInformasi yang diberikan Terutama fungsional Terutama anatomis-morfologis
Pada studi in-vitro. dari tubuh pasien diambil sejumlah tertentu bahan biologis misalnya 1 ml darah. Cuplikan bahan biologis tersebut kemudian direaksikan dengan suatu zat yang telah ditandai dengan radioisotop. Pemeriksaannya dilakukan dengan bantuan detektor radiasi gamma yang dirangkai dengan suatu sistem instrumentasi. Studi semacam ini biasanya dilakukan untuk mengetahui kandungan hormon-hormon tertentu dalam darah pasien seperti insulin, tiroksin, dan lain-lain.

Pemeriksaan kedokteran nuklir banyak membantu dalam menunjang diagnosis berbagai penyakit seperti penyakit jantung koroner, kelenjar gondok, gangguan fungsi ginjal, menentukan tahapan penyakit kanker dengan mendeteksi penyebarannya pada tulang, mendeteksi pendarahan pada saluran penceraan makanan dan menentukan lokasinya, serta masih banyak lagi yang dapat diperoleh dari diagnosis dengan penerapan teknologi nuklir yang sangat pesat perkembangannya.

Disamping membantu penetapan diagnosis, teknologi nukilr juga berperan dalam terapi penyakit-penyakit tertentu, misalnya kanker kelenjar gondok, hiperfungsi kelenjar gondok yang membandel terhadap pemberian obat-obatan non radiasi, keganasan sel darah merah, inflamasi (peradangan) sendi yang sulit dikendalikan dengan menggunakan terapi obat-obatan biasa. Untuk keperluan diagnosis, radioisotop diberikan dalam dosis yang sangat kecil, tapi dalam terapi radioisotop sengaja diberikan dosis yang besar terutama dalam pengobatan terhadap janringan kanker dengan tujuan untuk melenyapkan sel-sel yang menyusun janringan kanker itu.

Di Indonesia, kedokteran nuklir diperkenalkan pada akhir tahun 1960an, yaitu setelah reaktor atom Indonesia yang pertama di Bandung mulai dioperasikan. Beberapa tenaga ahli Indonesia dibantu oleh tenaga ahli dari luar negeri merintis pendirian suatu unit kedokteran nuklir di Pusat Penelitian dan Pengembangan Teknik Nuklir di Bandung. Unit ini merupakan cikal bakal Unit Kedokteran Nuklir RSU Hasan Sadikin, Fakultas Kedokteran Universitas Padjadjaran. Menyusul kemudian unit-unit berikutnya di Jakarta (RSCM, RS Pusat Pertamina, RS Gatot Subroto) dan di Surabaya (RS Soetomo). Pada tahun 1980an didirikan unit-unit kedokteran nuklir berikutnya di RS Sardjito Yogyakarta, RS Karyadi Semarang, RS Jantung Harapan Kita Jakarta, dan RS Fatmawati Jakarta. Saat ini di Indonesia terdapat 15 rumah sakit yang melakukan pelayanan kedokteran nuklir dengan menggunakan kamera gamma, disamping masih terdapat 2 rumah sakit lagi yang hanya mengoperasikan alat penatah ginjal yang dikenal dengan nama Renograf.

Pemanfaatan Teknik Nuklir di Luar Kedokteran Nuklir

Di luar kedokteran nuklir, teknik nukir masih banyak memberikan sumbangan yang besar bagi kedokteran serta kesehatan, yaitu:
1. Teknik Pengaktifan Neutron
Teknik ini dapat digunakan untuk menentukan kandungan mineral tubuh terutama untuk unsur-unsur yang terdapat dalam tubuh dengan jumlah yang sangat kecil (Co, Cr, F, Mn, Se, Si, V, Zn, dll) sehingga sulit ditentukan dengan metoda konvensional. Kelebihan teknik ini terletak pada sifatnya yang tidak merusak dan kepekaan yang sangat tinggi
2. Penentuan Kerapatan Tulang Dengan Bone Densitometer
Pengukuran kerapatan tulang dilakukan dengan cara menyinari tulang dengan radiasi gamma atau sinar-X. Berdasarkan banyaknya radiasi gamma atau sinar-X yang diserap tulang yang diperiksa maka dapat ditentukan konsentrasi mineral kalsium dalam tulang. Perhitungan dilakukan oleh komputer yang dipasang pada alat bone densitometer tersebut. Teknik ini bermanfaat sebagai alat bantu diagnosis kekeroposan tulang (osteoporosis) yang sering menyerang wanita pada usia menupause (mati haid) sehingga menyebabkan tulang mudah patah.
3. Three Dimensional Conformal Radiotherapy (3D-CRT)
Terapi radiasi dengan menggunakan sumber radiasi tertutup atau pesawat pembangkit radiasi sudah lama dikenal untuk pengobatan penyakit kanker. Perkembangan teknik elektronika maju dan peralatan komputer canggih dalam dua dekade, telah membawa perkembangan pesat dalam teknologi radioterapi. Dengan menggunakan pesawat pemercepat partikel generasi terakhir telah dimungkinkan untuk melakukan radioterapi kanker dengan sangat presisi dan tingkat keselamatan yang tinggi melalui kemampuannya yang sangat selektif untuk membatasi bentuk jaringan tumor yang akan dikenai radiasi, memformulasikan serta memberikan paparan radiasi dengan dosis yang tepat pada target. Dengan memanfaatkan teknologi 3D-CRT ini sejak tahun 1985 telah berkembang metode pembedahan dengan radiasi pengion sebagai pisau bedahnya (gamma knife). Kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi dengan teknik ini, bahkan tanpa perlu membuka kulit pasien dan tanpa merusak jaringan di luar target.

Ilmu Kedokteran Nukir Molekuler

Perkembangan disiplin ilmu baru yaitu ilmu kedokteran molekuler (moleculer medicine). Beranjak dari konsep ilmu kedokteran molekuler, maka diagnosis, terapi, dan pemantauan penyakit menjadi berdasarkan molekuler. Akan terjadi perobahan cara pandang penyakit dari organ (organ oriented) menjadi molekuler (moleculer oriented)
Dengan keunikannya, ilmu kedokteran nuklir akan banyak bersinggungan dengan ilmu kedokteran molekuler. Bidang garapan kedokteran nuklir dimasa akan lebih tertuju pada studi in-vivo tentang metabolisme, imunologi, serta reseptor seperti reseptor endokrin, tumor, dan neorotransmiter. Radiofarmaka molekuler akan banyak digunakan, yang sebagian berasal dari radionuklida waktu paroh pendek produksi siklotron.
Perkembangan tersebut melahirkan paradigma baru yaitu Kedokteran Nuklir Molekuler yang merupakan penegasan dari hakikat ilmu kedokteran dalam perspektif perkembangan ilmu dan teknologi kedokteran. Dari sudut pandang kedokteran nuklir molekuler, masalah pasien akan dilihat sebagai disfungsi molekuler bukan kelainan struktural.


Tragedi Chernobyl



Tanggal 26 April 1986, 22 tahun lalu, pukul 01.23 terjadi ledakan pada Unit 4 PLTN Chernobyl. Peristiwa ini menggemparkan dunia karena mengingatkan kembali pada ledakan bom atom di Hiroshima dan Nagasaki, Jepang, saat berkecamuk Perang Dunia II yang menewaskan sekitar 220.000 orang.
Trauma Hiroshima dan Nagasaki belum hilang dari ingatan orang, muncul kembali peristiwa Chernobyl yang termasuk kecelakaan terbesar pada PLTN selama kurang lebih 60 tahun. Berbagai media cetak dan elektronik sejagat memberitakan tragedi itu secara beragam baik yang bersifat normatif, emosional, ataupun bombastis.
Trauma yang melanda masyarakat di lokasi kejadian dan sekitarnya akibat peristiwa Chernobyl menjadikan setiap tanggal 26 April pukul 01.23 lonceng berdentang-dentang di Ukraina. Walaupun malam telah larut dan udara dingin, namun warga tetap terjaga. Mereka meletakkan bunga dan lilin di monumen korban bencana Chernobyl.
Upacara yang sama digelar di Slavutych, Rusia, kota yang didirikan untuk menampung para pekerja Reaktor Chernobyl. Upacara juga diperingati di negara tetangga Ukraina, yaitu Belarus, yang ikut menderita akibat bencana Chernobyl.


Penyebab Kecelakaan


Reaktor Chernobyl jenis RBMK didirikan di atas tanah rawa di sebelah utara Ukraina, sekitar 80 mil sebelah utara Kiev. Reaktor unit 1 mulai beroperasi pada 1977, unit 2 pada 1978, unit 3 pada 1981, dan unit 4 pada 1983. Sebuah kota kecil, Pripyat, dibangun dekat PLTN Chernobyl untuk tempat tinggal pekerja pembangkit itu dan keluarganya.
Tipe PLTN Chernobyl dirancang untuk menghasilkan plutonium guna pembuatan senjata nuklir serta listrik. Tipe PLTN berfungsi ganda seperti ini tidak ada di negara-negara Barat, seperti, AS dan Prancis, yang merupakan negara pioner PLTN di samping Uni Soviet (pada waktu itu) sebagai pioner pertama.
Secara garis besar, bencana Chernobyl dapat dijelaskan sebagai berikut. Pada 25 April 1986 reaktor unit 4 direncanakan dipadamkan untuk perawatan rutin. Selama pemadaman berlangsung, teknisi akan melakukan tes untuk menentukan apakah pada kasus reaktor kehilangan daya turbin dapat menghasilkan energi yang cukup untuk membuat sistem pendingin tetap bekerja sampai generator kembali beroperasi.
Proses pemadaman dan tes dimulai pukul 01.00 pada 25 April. Untuk mendapatkan hasil akurat, operator memilih mematikan beberapa sistem keselamatan, yang kemudian pilihan ini yang membawa malapetaka. Pada pertengahan tes, pemadaman harus ditunda selama sembilan jam akibat peningkatan permintaan daya di Kiev. Proses pemadaman dan tes dilanjutkan kembali pada pukul 23.10 25 April. Pada pukul 01.00, 26 April, daya reaktor menurun tajam, menyebabkan reaktor berada pada situasi yang membahayakan. Operator berusaha mengompensasi rendahnya daya, tetapi reaktor menjadi tak terkendali. Jika sistem keselamatan tetap aktif, operator dapat menangani masalah, namun mereka tidak dapat melakukannya dan akhirnya reaktor meledak pada pukul 01.30.
Kecelakaan PLTN Chernobyl masuk level ke-7 (level paling atas) yang disebut major accident, sesuai dengan kriteria yang ditentukan INES (The International Nuclear Event Scale). Di samping kesalahan operator yang mengoperasikannya di luar SOP (standard operation procedure), PLTN Chernobyl juga tidak memenuhi standar desain sebagaimana yang ditentukan oleh IAEA (International Atomic Energy Agency).PLTN Chernobyl tidak mempunyai kungkungan reaktor sebagai salah satu persyaratan untuk menjamin keselamatan jika terjadi kebocoran radiasi dari reaktor. Apabila PLTN Chernobyl memiliki kungkungan maka walaupun terjadi ledakan kemungkinan radiasi tidak akan keluar ke mana-mana, tetapi terlindung oleh kungkungan. Atau bila terjadi kebocoran tidak separah dibandingkan dengan tidak memiliki kungkungan.
Secara perinci, kecelakaan itu disebabkan, pertama, desain reaktor, yakni tidak stabil pada daya rendah - daya reaktor bisa naik cepat tanpa dapat dikendalikan. Tidak mempunyai kungkungan reaktor (containment). Akibatnya, setiap kebocoran radiasi dari reaktor langsung ke udara. Kedua, pelanggaran prosedur. Ketika pekerjaan tes dilakukan hanya delapan batang kendali reaktor yang dipakai, yang semestinya minimal 30, agar reaktor tetap terkontrol. Sistem pendingin darurat reaktor dimatikan. Tes dilakukan tanpa memberitahukan kepada petugas yang bertanggung jawab terhadap operasi reaktor.
Ketiga, budaya keselamatan. Pengusaha instalasi tidak memiliki budaya keselamatan, tidak mampu memperbaiki kelemahan desain yang sudah diketahui sebelum kecelakaan terjadi.
Penilaian atas berbagai kelemahan PLTN Chernobyl menghasilkan evaluasi internasional bahwa jenis kecelakaan seperti ini tidak akan mungkin terjadi pada jenis reaktor komersial lainnya. Evaluasi ini ditetapkan demikian karena mungkin berdasarkan analisis jenis reaktor lain yang memenuhi persyaratan keselamatan yang tinggi, termasuk budaya keselamatan yang dimiliki para operator sangat tinggi.


Dampak Kecelakaan


Pada 2003, IAEA membentuk Forum Chernobyl bekerja sama dengan organisasi PBB lainnya, seperti WHO, UNDP, ENEP, UN-OCHA, UN-SCEAR, Bank Dunia dan ketiga pemerintahan Belarusia, Ukraina, dan Rusia. Forum ini bekerja untuk menjawab pertanyaan, sejauh mana dampak kecelakaan ini terhadap kesehatan, lingkungan hidup dan sosial ekonomi kawasan beserta penduduknya. Laporan ini diberi nama Cherno- byl Legacy.
Diperkirakan semula dampak fisik akan begitu dahsyat. Artinya, akan menimbulkan korban jiwa yang luar biasa banyaknya. Namun, ternyata data sampai dengan 2006, jumlah korban yang meninggal 56 orang, di mana 28 orang (para likuidator terdiri dari staf PLTN, tenaga konstruksi, dan pemadam kebakaran) meninggal pada 3 bulan pertama setelah kecelakaan, 19 orang meninggal 8 tahun kemudian, dan 9 anak lainnya meninggal karena kanker kelenjar gondok.
Sebanyak 350.000 likuidator yang terlibat dalam proses pembersihan daerah PLTN yang kena bencana, serta 5 juta orang yang saat itu tinggal di Belarusia, Ukraina, dan Rusia, yang terkena kontaminasi zat radioaktif dan 100.000 di antaranya tinggal di daerah yang dikategorikan sebagai daerah strict control,ternyata mendapat radiasi seluruh badan sebanding dengan tingkat radiasi alam, serta tidak ditemukan dampak terhadap kesuburan atau bentuk-bentuk anomali.
Di sisi lain, hasil studi dan penelitian terhadap likuidator menunjukkan bahwa tidak ada korelasi langsung antara kenaikan jumlah penderita kanker dan jumlah kematian per satuan waktu dengan paparan radiasi Chernobyl.
Kemudian pada 1992-2002 tercatat 4.000 kasus kanker kelenjar gondok yang terobservasi di Belarusia, Ukraina, dan Rusia pada anak-anak dan remaja 0-18 tahun ketika terjadi kecelakaan, termasuk 3.000 orang yang berusia 0-14 tahun. Selama perawatan mereka yang kena kanker, di Belarusia meninggal delapan anak dan di Rusia seorang anak. Yang lainnya selamat.
Berdasarkan laporan Chernobyl Lecacy, sebagian besar daerah pemukiman yang semula mendapat kontaminasi zat radioaktif karena kecelakaan PLTN Chernobyl telah kembali ke tingkat radiasi latar, seperti sebelum terjadi kecelakaan. Dampak psikologis adalah yang paling dahsyat, terutama trauma bagi mereka yang mengalaminya seperti stres, depresi, dan gejala lainnya yang secara medis sulit dijelaskan.
Akibat kecelakaan itu, IAEA dan semua negara yang memiliki PLTN membangun konsensus internasional untuk selalu menggalang dan memutakhirkan standar keselamatan. Di sisi lain, pihak yang anti-PLTN telah menggunakan isu kecelakaan di Chernobyl sebagai bahan kampanye untuk menolak kehadiran PLTN, termasuk di Indonesia, dengan berbagai informasi yang keliru karena ketidaktahuan akan kebenaran informasi sebab terjadinya kecelakaan Chernobyl.
Belajar dari kecelakaan Chernobyl, IAEA telah menetapkan standar tambahan untuk memperkuat syarat keselamatan yang tinggi bagi pembangunan dan pengoperasian PLTN, antara lain, perbaikan desain sampai pada generasi ke-4, aturan main dalam bentuk basic safety,dan berbagai konvensi keselamatan

Destarius Music

Destarius Video Part I